概要

GANは訓練データに似た新しいデータを生成する学習モデルの一種です。 2つの学習するAIから作られます。

generatorは、新しい、訓練データに似たデータを生成する仕組み。 わかりやすく言うと、夢を描くようなしくみ。優秀な贋作者を目指します。

discriminatorは、データが、訓練データなのか、生成したデータなのか判別する仕組み。 夢か現実か判断するようなしくみ。優秀な鑑定士を目指します。

どちらも基本的には多層パーセプトロンで、ドロップアウトを使って学習させるそうです。

どんどん、generatorの性能が上がると、discriminatorの正解率は50%になります。いいかえると、本物なのか偽物なのか、判別がつかない作品をだしてくるようになるということです。

generatorの改善

CNN(convolutional neural network)をつかって、generatorをつくるのが、性能がよいみたいだというのが、最近の研究結果です。Radford et al. (2015)

効率のよいdiscriminatorAIの学習

CNNでは最後の方の層は、特徴マップごとにクラスを対応させたものを持ってきて、その平均値で判断するのが効率がよいと、Lin et al. (2013)で提案があったそうです。

ストライド2のたたみ込みをつかうのが、よいとかいてありました。

活性化関数にReLUを使う。

データの正規化

データの入力と、データの出力は正規化しないほうがよいようです。

スライド

GANの学習方法進展・画像生成・教師なし画像変換

https://www.slideshare.net/hamadakoichi/gan-training-techniques

紹介してあるサイト

以下のサイトを参考にしています。

はじめてのGAN

https://elix-tech.github.io/ja/2017/02/06/gan.html

ensorFlowで実装例

http://qiita.com/sergeant-wizard/items/0a57485bc90a35efcf26

機械学習の英語の紹介記事

http://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

トップ   編集 凍結 差分 バックアップ 添付 複製 名前変更 リロード   新規 一覧 単語検索 最終更新   ヘルプ   最終更新のRSS
Last-modified: 2017-06-13 (火) 00:11:38 (435d)